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Abstract. We investigate the properties of the two-dimensional quantum S = d Heisenberg 
antiferromagnetic model on a square lattice by means of a block approach. The lattice is 
divided into four spin square blocks and the Hamiltonian is expressed in terms of low-energy 
block states. In the framework of the mean-field theory based on the ‘auxiliary-boson’ 
formalism, we show that the spin excitation spectrum contains one singlet mode with 
the temperature-dependent gap and three degenerate triplet modes. The asymptotic low- 
temperature spin-spin correlations are proportional to R-’i2 exp[- R( l /E ,  + 1/E2)], where 
5 ,  = exp(A/T), E 2  = constant and A = 0.5.l. The uniform susceptibility tends to zero in 
agreement with numerical results; the energy per site is close to -0.57.l. Beyond the mean- 
field theory we find gapless collective excitations analogous to the gapless mode in the neutral 
Fermi gas with attraction. 

1. Introduction 

Recent neutron experiments [l, 21 indicate that the spin subsystem of the high-T, 
superconductor C u 0 2  planes may be described in a first approximation by the S = 1 
Heisenberg antiferromagnetic Hamiltonian on a square lattice. The theoretical back- 
ground for such a description is based on the the generalized two-band Hubbard 
model [3,4] which takes into account strong intrasite Coulomb repulsion between two 
holes on Cu ions. It is known that, for non-zero temperatures, spin-correlation functions 
(S$ , )+  0 at r+ CO, i.e. long-range order (LRO) is absent [5]. 

For the ground state at T = 0 the numerical method indicates the existence of LRO [6- 
81, although there is no rigorous analytical proof of this fact. These methods give 
reliablevaluesforthe ground-stateenergy eo = Eo/N  = -0.665Jand the first correlation 
functions Kg = -0.115 and K ,  = 0.071, where g is the nearest-neighbour vector. It is 
interesting that different variational ground-state functions-the NCel-like and non- 
magnetic (the resonance valence bonds)-have similar energies [8]. 

A recent analytical analysis of the model is carried out in the mean-field (MF) 
approximation by representing spin site operators S j  as the Fermi (spinons) [9,10] or 
the Bose [ll] operators uro. The MF approximation is based on the order parameters 
( U , ~ U ~ + ~ - ~ ) .  In both cases (Fermi and Bose) the &operator representation for the spin 
site operators is rigorous only if the local constraint ~ o u ~ o u r a  = 1 is fulfilled on each site. 
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The main drawback of the above-mentioned considerations is the substitution of the 
local constraint by the analogous one averaged over sites, i.e. 'constraint in average'. 
As already known, such an approximation is valid at S 9 1. In the case of a small spin 
(S = i), it leads to essential breakdown of the sum rule; the self-consistent value (S?) 
calculated with operators aro happens to be # times greater than S 2  = 2 [ l l ,  121. Because 
of the 'constraint in average' the ground-state energy eo/] = -0.845 (-0.416) and 
nearest spin-correlation functions K ,  = -0.168 (-0.114) found in the Bose (Fermi) 
approach do not fit the numerical results. 

Our consideration will be close to the Bose approach in [ l l ] .  Let us summarize the 
main results of this work. The elementary excitation spectrum w ( k )  describes two 
degenerate branches with spin t .  There is a temperature-dependent gap proportional to 
the inverse correlation length E = exp(A/T), A = 1.161. At T+ 0 the uniform sus- 
ceptibility x remains finite, the specific heat Cis proportional to T2, the spin-correlation 
function K ,  at large r is proportional to r-'exp(-Kr), K = E - ' .  Expressions for the 
structure factor S(q,  w )  = (S'(q, O)S ' ( -q ,  t)>u and S(q)  = Jdw S(q, U) show a peak for 
the antiferromagtic wavevector q = ( n / g ,  n / g ) .  

Our approach is based on the block method, which allows us to account for spin 
correlations [13] already in the zero approximation without breakdown of the square 
symmetry of the problem. Let us divide the plane into four site square blocks and find 
all block eigenstates vR,  where R is the block vector index. As will be seen below, the 
main difference between our and the above-mentioned studies based on the single site 
states uro are as follows: the block solution of the problem in the MF approximation and 
'constraint in average' violate the sum rule only slightly, i.e. the use of block states 
effectively corresponds to a spin increase. In particular it gives a proper description of 
the correlation functions at small distance, a decrease in the correlation length 6 with 
respect to [11] and qualitative changes in the character of the elementary excitations. 
We shall also show the presence of collective gapless excitations in the system. 

2. Block formulation for the Hamiltonian 

The complete set of the four site square block states vR is formed by 16 states: one singlet 
with energy ep, = -W; one triplet tpR,m (m = k l ,  0) with energy E* = - J ;  two triplets 
and one singlet with energy 0; five S = 2 states with energy 21, where J is an exchange 
integral. We shall treat the problem in the subspace of four energy low-lying block states 
qR and In conclusion we shall discuss the influence of the next energy states on 
the results. 

The explicit form of the block wavefunctions qR and is 

Here 10) is the block vacuum, c i s  the block rotation operator by n/2 and 

is a product of the four Fermi creation operators for one-electron states with a spin 
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projection oi/2; i = 1 , 2 , 3 , 4  is the site index of the block R .  The states qR,m, m = k l ,  
can be easily constructed by acting on qR,o by S i  block spin operators. 

In our reduced subspace the Heisenberg Hamiltonian takes the form (im) =lqm)): 

S R  = S m l . " ~ Z Z ~ l ' m Z ,  
m i . m 2  

Here Z;I,'* is the Hubbard projection operator which transforms the block R from the 
state v to v 2 ;  V describes the transformation of the neighbouring blocks from q to qm 
and vice versa; T1 is the singlet-triplet exchange interaction; T2 is the exchange inter- 
action between triplets; 2g is the nearest-neighbour block vector. 

In the following we shall consider only the Hamiltonian h. Justification for omitting 
the terms T I  and T2 will be given later in section 3 .  

Let us introduce the boson fields aR,  b R , ,  for the operators Z;I.'*. The 'constraint in 
average' is enforced by a 'chemical potential' A: 

Z;jl., = b+ 
( 3 )  

z,"" = a i a R  Z g l . m ?  = b i . m  l b R . m ,   ma^ 

n ,  + 3nb = 1 na = ( a i a R )  n b  = ( b i . m b R . m ) .  

In this approximation, h describes the four-component Bose gas with an interaction 
which transforms triplet boson bR,, to singlet aR and vice versa. We shall discuss the non- 
magnetic state of the system so that the thermal average (a'b) = 0 but the following 
abnormal averages are non-zero: 

A a  = A: = ( a R a R . 4 )  

hMF = ha + hb + Eo 

A b  = Ab* = ( -1 )m(bR .mbR+2g . -m) .  (4) 

In the MF approximation the Hamiltonian h takes the form 

( 5 )  

where 

ha = A a i a R  + 3 h b p  2 ( a i a i + 2 g  + HC) 
R R.g 

hb = ( E  f A) E b R f , m b R , m  + h a p  ( - 1 ) m ( b i . m b i + 2 g , - m  + HC) 
R . m  R .g ,m  

and 

Eo = No&, - Nop24AaAb - Noh E =  E,, ,  - E~ = J .  

No = N/4, the number of blocks, and hMF invariance with respect to rotation in the spin 
space is provided by the Ab phase (- 1)"' in equation (4). 
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Using the momentum representation for ha (hb)  and the U-v transformation ak, bk ,  
&k, P k  (see Appendix) we diagonalized the Hamiltonian (5): 

ha = [mk,aak+&k + t (wk. ,  - A)] LL)k,a = ( A 2  - 4p2,.~) ' '~ 
k 

3. The one-particle spectrum and the correlation functions 

Self-consistent equations for abnormal average and constraint yield the system of three 
equations for finding A,, Ab and A: 

n ,  + 3nb = 1. 

Here 

n ,  = N,' (ak+ak) = N,' C, [ (nk ,n  + t ) ~ w i . ~  - ;I 
k k 

nb = N,' (6kf.mbk.m) = N,' C, [(nk.p + h ) ( E  A)wk.lp - a ]  
k k 

where nk,@(@) = n(wk,n(P))  is the Bose occupation function. 
System (7) has a solution with A,, Ab # 0 at T < To = 0.3J. In this temperature range 

the Hamiltonian (6) describes one mode of singlet excitations and three degenerate 
modes of triplet excitations. The spectrum analysis is simple for the low-temperature 
limit. According to [11] it is convenient to express W k , a  as W k , a  = c,[K* + 2(1 - y;)] ' / '  
where K serves as a cut-off in momentum integrations in ( 7 ) ;  K determines the inverse 
correlation length. At low temperatures the numerical solution of ( 7 )  yields 

c,  = 12 X f i p A b  Ab = 0.128 A ,  = 0.905 A = 0.512.l 

K = exp(-A/T) 

The value A (equation (8)) is half the corresponding value A from [ 111; this means 
a relative decrease in the correlation length lj. 

The triplet excitation spectra wk,@ (equation (6)) have a finite gap q = 0.75J in 
contrast with W k , n  which have an exponentially small gap at T- 0. 

Note that the average number of triplet states is non-zero and 3nb = 0.17. The specific 
heat is proportional to T 2 .  The mean energy value eo per site, equal to -0.573J, lies 
between the bosonic and fermionic one-site approach values. 

To take into account the omitted term T I ,  we tried to introduce the 'kinetic' averages 
A, = (a;uRfb) ,  A b  = (b~ ,mbR+2g , , )  together with the averages (4) .  This leads to the 

(8) 
A = 0.5065. 
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addition of two corresponding equations in system (7). We found that solution of this 
new system gives zero values for A,, A,; so, in the Hartree-Fock MF approximation, TI 
vanishes. As to the term T2 ,  it can be seen that it contains four triplet operators and so 
is proportional to ni << 1. Our solution is unusual because of the finite gap in the triplet 
excitation spectrum in contrast with the usual massless spin-wave excitations. Never- 
theless, as we shall show in section 4, in addition to the massless singlet excitations there 
exists a gapless branch of collective excitations. 

Let us discuss the sum rule and the uniform magnetic susceptibility at low tempera- 
tures. The block and site spin operators s& and s&., ('j = x, y, z) are expressed by the 
operators Z p y l  and, hence, aR and bR,,. The expressions for z-components are given 
by 
Sk = z k l  - z-1.-1 = b+ b 

R R.1 R. l  - b i . - l b R , - l  

= ( - 1 ) " 1 6 - " 2 ( U i b ~ , ~  f bR+,oaR),+ b ( b i . i b ~ , i  - b i , - l b R , - l ) .  

It is not difficult to find the x- and y-components. 
Violation of the sum rule could be checked by comparing the values for ((Sz)2) which 

have been obtained by boson operator substitution at different steps of the calculation. 
On the one hand, we have 

( ( S i ) * )  = ((Zk.1 - z-'.-' R ) 2 ) = (zk' + ZR1'-l) = ( b ; . l b ~ % 1  f b i . - l b ~ . - l )  = 2nb 

(loa) 

and, on the other hand, 

(SAS;) = ((Zkl - ~ - ' . - ' ) ( z ~ l  - z - l . - l  
R R 1) 

= ( (bR f , lbR . l  - b i . - l b R , - l ) ( b i . l b R . l  - b i , - l b R . - l ) )  

Here we use z k ( b l , l b l , - l )  = 0 which follows from the U-U transformation. 

to ni  (itb = 0.06) in our case, i.e. small. 
A comparison of (loa) and (lob) shows that the sum rule violation is proportional 

The temperature dependence of the uniform susceptibility is given by 

Thus x(T+ 0) + 0 as in the fermionic approach [lo] .  The exponential decay is deter- 
mined by the gap in the triplet excitation spectrum. 
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To investigate the correlation function 

we must consider the special case R 1  = R 2 .  In this case when both site spins belong to 
one block we must use the block states (1) to find KjJ. Straightforward calculations yield 
the fact that Kij is independent of j and is given by 

Here as before i = 1 , 2 , 3 , 4  is the site index in a block. 
As can be seen from (12) the leading part of K!! connected with the average (ak+ak) 

has different signs at odd and even sublattices; so correlations exhibit antiferromagnetic 
character. 

Using the explicit form of W k , @  ( w ~ , ~ )  it is easy to find the asymptotic spin-spin 
correlations at a large distance R :  

K!J(R = R ,  - R 2 )  - W R - " '  exp(-R/g) 

E l  = K - '  = exp(A/T) g* = (21'*q)-1. 

E-1 = C L '  + g;1 
(13) 

As is clear from (13) the low-temperature asymptotic behaviour of K!! is determined by 
the triplet gap q .  The correlation length is much smaller in comparison with the one-site 
bosonic approach [ l l ] .  At  T = 0, 5: = and hence there is no LRO in the ground state. 

To find the correlation function K!J(r,, r 1  + r )  at small distance r - g,  it is natural to 
define the function KJ'(r) which is constructed by averaging of K!!(r,, r l  + r )  on rl  inside 
the block. Such an averaging reconstructs the translational symmetry with initial periods 
g,,g,. In principle, despite the plane division into blocks thissymmetry must be conserved 
by taking into account the complete set of 16 block states. The values of the first spin- 
correlation functions obtained from (12)  at T = 0 are 

K1 = K!!(g) = -0.097 K 2  = KIj(2g) = 0.037. 

These values are in qualitative agreement with the results of numerical methods: K 1  = 
-0.117, K 2  = 0.07 [6]. For comparison it is possible to obtain K 1  = -0.168 from the 
one-site bosonic method [ 111. 

4. Gapless excitations 

Let us consider the existence of gapless excitations in our treatment of the model. A 
gapless mode for collective sound-like excitations with a small momentum is known to 
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la) lb) IC) Id) 

Figure 1. Typical vertices which determine collective excitations. 

exist in a system with a gap in a one-particle excitation spectrum [14, 151. Such a 
situation takes place for neutral attracting Fermi particles. For charged particles (e.g. in 
superconductors) this mode transforms to plasma waves. In our case one-particle Bose 
excitations are neutral and have a gap in the spectrum. Collective excitations with 
momentum q must be described by the following operators: 

To find the spectrum of these excitations in the framework of the Hamiltonian ( 2 )  
we must go beyond the MF approximation (5) and take into account the off-diagonal 
terms V': 

After the U-U transformation the interaction V' yields the vertices shown in figure 1 
where the full line corresponds to the singlet excitations a k  ( a l ) ,  and the wavy line to 
the triplet excitations P k  (pk+). These vertices contain the product of the U k , a ( @ ) -  and 
u k ,  .(@)-quadratic combinations (see Appendix). 

The interaction constant p is numerically only small (9) relative to the energy level 
difference .cy, - E ~ .  Nevertheless we shall treat the problem in the framework of the 
perturbation theory on p .  Then in the ladder approximation the vertices in figures l ( a )  
and l ( b )  lead to the closed system of equations for eight Green functions connected with 
excitations (14) .  By omission of non-uniform terms as in [14] it is possible to obtain the 
system which determines the collective excitation spectrum w(q). The explicit form of 
the system is given in the Appendix. The gapless spectrum o(q = 0) = 0 exists if the 
solution (A2) exists for o, q + 0. In this limit it is possible to construct two equations 
for the Green functions (Ak I), (Bk I): 

(Bk 1 )  = -(l + 2nk ,p ) (2Wk,p ) -1Ni1  6pk,k,(Ak1 1 ) .  
k i  

It is not difficult to show that the existence condition for the solution (16) strictly 
coincides with that giving the self-consistent solution of (7) for Aa, Ab.  This ensures that 
the collective excitations (14) have a gapless spectrum at T < TO. It may be shown that 
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the vertices in figures l ( c )  and l ( d )  do not alter equations ( 1 6 ) .  To obtain the explicit 
expression for w(q)  and to investigate the stability of the spectrum, it is necessary to 
solve the rather complex system (A2). The analysis yields that the spectrum is linear in 
q and vertices of the type in figures l(c) and l(d) must be taken into account to find the 
velocity of sound. 

5. Conclusion 

The most strange result that we found is the triplet excitation gap. We think that it is an 
artifact of the auxiliary boson approach in the described block method simultaneously 
with the ‘constraint in average’. The analogous situation occurs in the one-dimensional 
S = t Heisenberg antiferromagnet. The Schwinger boson approach [ l l ]  gives a non- 
zero gap in the spin-wave spectrum in contrast with the exact solution [16 ] .  Nevertheless 
it is possible to construct gapless collective Schwinger boson excitations as in Section 4 .  
Thus these modes are Goldstone modes; however, it is difficult for us to investigate their 
thermodynamic properties. 

In conclusion we shall discuss the possible influence of high-energy block states on 
our results. The low-lying part of the one-particle spectrum is determined by the singlet 
states qR; the triplet excitations have a finite gap. This result will remain the same if we 
take into account the states v R  with an energy greater than - J .  These states will decrease 
the triplet gap q and the number n, of singlet states and increase the temperature To; 
however the temperature dependence of C( T )  andX( T )  will not change. The corrections 
due to high-lying states may increase lK,I and decrease the correlation length. Finally 
we would like to emphasize that the inclusion of the high-lying energy states will not 
influence the existence of collective gapless excitations. 
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Appendix 

Let us represent the explicit form for the u-U transformation a ,  b ,  a,  p and equations 
for two-particle Green functions which determine the spectrum w ( q )  for the collective 
excitations ( 1 4 )  as follows: 

ak = U k a a k  - U k n a ! k  b k , t n  = U k , p P k . m  - ( - l > m u k , p P T k , - m  m = O , & l  

U k , a  = [+(A + w k , n ) @ i , L ] 1 / 2  

The Green function equations for operators Aqk and a singlet combination Bqk of 
operators B r k  ( 1 4 )  have the form 
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Expressions for yp,, R, can be found by the formal index exchange E-+ P in the 
expressions for yap, R,. We have already mentioned that the non-uniform terms in the 
RHS of equation (A2) were omitted. At U ,  q + 0 the system (A2) gives equations (16) .  
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